

CERTIFICATION

AOAC[®] *Performance Tested*SM

Certificate No. **051901**

The AOAC Research Institute hereby certifies that the performance of the test kit known as:

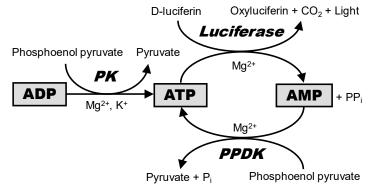
LuciPac A3 Surface

manufactured by

Kikkoman Biochemifa Company 2-1-1, Nishi-shinbashi Minato-ku, Tokyo 1005-0003 Japan

This method has been evaluated in the AOAC[®] *Performance Tested Methods*SM Program, and found to perform as stated by the manufacturer contingent to the comments contained in the manuscript. This certificate means that an AOAC[®] Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC *Performance Tested*SM certification mark along with the statement - "THIS METHOD'S PERFORMANCE WAS REVIEWED BY AOAC RESEARCH INSTITUTE AND WAS FOUND TO PERFORM TO THE MANUFACTURER'S SPECIFICATIONS" - on the above mentioned method for a period of one calendar year from the date of this certificate (May 22, 2019 – December 31, 2019). Renewal may be granted at the end of one year under the rules stated in the licensing agreement.

Scott Coates


Scott Coates, Senior Director Signature for AOAC Research Institute May 22, 2019 Date

2275 Research Blvd., Ste. 300, Rockville, Maryland, USA Telephone: +1-301-924-7077 Fax: +1-301-924-7089 Internet e-mail: aoacri@aoac.org * World Wide Web Site: http://www.aoac.org

METHOD AUTHORS	SUBMITTING COMPANY
latsumi Tanaka, Wataru Saito, and Mikio Bakke	Kikkoman Biochemifa Company
	2-1-1, Nishi-shinbashi
	Minato-ku, Tokyo 105-0003
	Japan
KIT NAME(S)	CATALOG NUMBERS
uciPac A3 Surface	60361
NDEPENDENT LABORATORY	AOAC EXPERTS AND PEER REVIEWERS
NSE International	Mark Carter ¹ , Michael Brodsky ² , Joseph Odumeru ³
789 N. Dixboro Rd	¹ MC2E, Chattanooga, TN, USA
Ann Arbor, MI 48105	² Brodsky Consultants, Thornhill, ON, Canada
	³ University of Guelph, Guelph, ON, Canada
Q Laboratories	
1930 Radcliff Drive	
Cincinnati, OH 45204	
APPLICABILITY OF METHOD	
Analytes – Adenosine triphosphate (ATP), adenosine diphosphate (ADP)	
and adenosine monophosphate (AMP)	
Matrices – Stainless steel	
Performance claims - According to the linear regression and other	
statistical approaches, the LuciPac A3 Surface for Hygiene Monitoring is	
effective at detecting the presence of total adenylate (ATP+ADP+AMP) on	
stainless steel surfaces in food processing and food service facilities with	
an LOD of 3.3 fmol ATP, 0.9 fmol ADP and 1.8 fmol AMP.	
ORIGINAL CERTIFICATION DATE	CERTIFICATION RENEWAL RECORD
May 22, 2019	New Approval 2019
METHOD MODIFICATION RECORD	SUMMARY OF MODIFICATION
NONE	NONE
Under this AOAC [®] Performance Tested SM License Number, 051901 this	Under this AOAC [®] Performance Tested SM License Number, 051901 this
method is distributed by:	method is distributed as:
NONE	NONE

PRINCIPLE OF THE METHOD (1)

The principle of detection of A3 is shown in Figure 1. Firefly luciferase can produce light in the presence of ATP, luciferin, oxygen and Mg²⁺. The amount of light produced is proportional to the amount of ATP in a sample and therefore ATP can be quantified by measuring the light produced through this reaction using a luminometer, showing a reading of Relative Light Units (RLUs). This is well known as the ATP method. In order to detect AMP simultaneously and maintain the light production, ATP was regenerated from AMP using pyruvate orthophosphate dikinase reactions (PPDK) in the presence of phosphoenol pyruvate, inorganic pyrophosphate (PPi) and Mg²⁺ (Figure 1). Furthermore, ADP is converted to ATP by pyruvate kinase (PK, Figure 1). This allows the test to detect and quantify total adenylate and dramatically increases the signal available to the test.

DISCUSSION OF THE VALIDATION STUDY (1)

ATP tests are commonly used for an assessment of hygienic conditions in food industry. It should be noted that adenylate swabbing assays including ATP and the A3 test are not for microorganism detection but for cleaning verification because adenylates are not specific to microorganisms as shown in Table 3 and 4. However, monitoring the surface after cleaning is effective for preventing foodborne illness for the following reasons. First, food residues on surfaces are the source of nutrients for microorganisms. Second, organic matter can interfere with the antimicrobial activity of disinfectants (5) and decrease sanitation efficiency. Moreover, cleaning verification also seems to be effective for preventing food allergen cross-contact that can occur via the transfer of allergens in the same facility or on the same processing line for the allergen-containing and nonallergen-containing foods or ingredients.

A validation study of a conventional ATP monitoring test on stainless steel surfaces has been reported (3). Recently, the LuciPac A3 Surface Hygiene Monitoring System that can detect ATP+ADP+AMP (A3) has been developed and it shows more advanced sensitivity to determine food/organic debris compared to the conventional ATP tests (2). However, there is no report about the method validation for A3 assay. Here we report the validation study of the LuciPac A3 Surface Hygiene Monitoring System under the specific guidelines of the AOAC Research Institute *Performance Tested Method*SM program.

Firstly, pure analyte assays were performed to determine the LODs of ATP, ADP and AMP. The results in the method developer laboratory and the independent laboratory were consistent (Table 2). The LODs were around 10 RLU. According to the regression analyses, LODs can be expressed as ca. 2.5 fmol/assay on a molecular basis. RSD_r values <20% were achieved at or above 2.5 fmol, though RSD_r values of analyte-free water and 1.0 fmol adenylate were 20-60% (Table 1). This study also demonstrated good linearity of detection sensitivity [$R^2 > 0.9862$].

In order to determine the feasibility of detecting food matrix residues on stainless steel surfaces, the surface was treated with dilutions of 5 food matrices, i.e. raw poultry (raw chicken breast), ready to eat meat product (sliced deli ham), fresh produce and Juice (orange juice), heat processed milk and dairy (yogurt) and chocolate/bakery products (apple pie). All matrices showed sufficient reactivity as reported previously and a response that varied with dilution (Table 3). Method Developer Studies demonstrated that pure analyte solutions yielded <20% RSD_r (Table 1), but RSD_r values of each matrix solution for swabbing assays were <30%. Independent laboratory Studies demonstrated that RSD_r values of each matrix solution for swabbing assays were <26.7% (orange juice) and <42.5% (ham, Table 3). The higher variations of matrixes were likely caused by additional factor, i.e. swabbing technique. Additionally, regarding insoluble food samples, solid and liquid are separated soon even after careful homogenization. This unavoidable heterogeneity may cause variability in the amount of matrix applied onto the plates. It should also be considered that all cotton swabs may not be able to pick up the dried solid particles completely. Consistent swabbing technique is important to minimize the variability. Swabbing an object thoroughly using the entire surface of the swab with rotation is ideal. Ideally the swab should be slightly bent when exerting appropriate pressing force.

Three pure cultures of microorganisms, a Gram-negative bacterium (*C. sakazakii*), a Gram-positive bacterium (*L. acidophilus*), and a yeast species (*S. cerevisiae*) were also tested using stainless steel surfaces. As is the case with food matrices, RLU responses to the organism concentration were observed (Table 4). RSDr values of each microbial solution for swabbing assays (10-35%) were also comparable to the food matrix study. Consequently, validation study using stainless steel surface demonstrated that the LuciPac A3 Surface Hygiene Monitoring System provides rapid and precise food/organic debris determination.

Disinfectants are used in cleaning to kill microorganisms, and these chemicals may be left on the surface. According to our previous study, sodium hypochlorite (500 ppm), ethanol (80%) and quaternary ammonium (benzalkonium chloride, 0.1%) inhibit the A3 assays to some extent (ca. 10% inhibition) when 10 µL of disinfectants were added to the moistened swab (2). In this study, inhibition effects were evaluated using the stainless steel surface model to closely mimic industrial cleaning practices (Table 5 and 6). Since ethanol can be completely evaporated, another sanitizer for food processing, peracetic acid (6%), was tested instead in this study. Similar to our previous result, sodium hypochlorite did not affect the result significantly under these conditions. Quaternary ammonium inhibited 25-30% of the ATP signal. Contrary to our expectations, peracetic acid amplified the RLU output. Acid compounds generally reduce RLU values due to lowering pH of the reaction mixture from the optimum. The reason of the enhancement by peracetic acid on stainless steel is unclear. The peracetic acid (boiling point: 105°C) and acetic acid (boiling point: 118°C) seem to have been completely evaporated and other components might enhance the measurement values. As described above, the LuciPac A3 Surface hygiene monitoring system is intended for cleaning verification. Moreover, Table 5 and 6 indicate that it may be affected by chemical agents. Therefore, the A3 test is recommended to be used after rinsing away sanitizing agents for accurate assessment.

The selectivity study demonstrated that LuciPac A3 showed good specificities for ATP, ADP and AMP. There was no negative interference from the 10 potentially cross-reacting compounds at 25-fold higher concentrations of ATP, ADP and AMP. These results are likely due to the specificity of the luciferase enzyme. In the lot-to-lot consistency and instrument variation studies, no significant difference could be found at any ATP concentration among the three lots of swab devices and three luminometers, respectively. These data also support that the LuciPac A3 Surface hygiene monitoring system produces consistent and reliable data for the evaluation of sanitation program.

The robustness study showed that the product is sensitive to temperature, whereas mixing time has no impact. The measurement values at 12°C were ca. 60-70% of those at 23°C. Enzyme activity is known to be susceptible to temperature, and such characteristics were reflected. These data also suggested that the swab devices should be allowed to reach room temperature prior to testing, if they are from refrigerated stock, to avoid lower measurement value than actual. The RLUs at 35°C were almost equivalent to the results at 23°C due to the adjustment by the temperature compensation mode. Regarding extended mixing time, in general, a signal by luciferase-luciferin reaction is reduced due to ATP consumption. Interestingly, the LuciPac A3 Surface hygiene monitoring system was robust enough not to be affected by 12 s mixing. The stable bioluminescence regardless of mixing time can be explained by the principle of the regeneration system of ATP from AMP (Figure 1). This may be useful to reduce measurement variability derived from individual differences in the assay operation.

The accelerated stability study demonstrated that the swab devices stored for 30°C for 5 weeks exhibited output RLU for 50 fmol and 500 fmol equivalent to the swab devices before the storage. The LuciPac A3 Surface are composed of two separated reagents, the luminescent reagent and the releasing solution including the surfactant. Since thermostable luciferase is used (5) and the luminescent reagents are in lyophilized powder form in the LuciPac A3 Surface, such stability seems to be achieved. Although a trend was seen in that the blank values slightly increased through the storage, it would not impact the interpretation of the swabbing test results. In order to verify the 15-month shelf life, a real time stability test at 4°C is being carried out.

Table 1. Method developer and independent laboratory pure analyte results using LuciPac A3 Surface/Lumitester PD-30 system. (A) Adenosine triphosphate (ATP), (B) Adenosine diphosphate (ADP) and (C) Adenosine monophosphate (AMP) (1)

Α.

	_			ATF	P, fmol/as	say		
		0	1	2.5	5	10	25	100
	Mean RLU ^a	5.2	7.0	10.3	14.1	22.2	46.0	179.4
Method	s _r ^b	1.6	2.0	1.3	1.9	2.3	3.9	8.7
developer	RSD _r , % ^۲	31.1	28.6	13.0	13.1	10.1	8.5	4.8
	Mean fmol ^d	0.1	1.2	3.1	5.3	9.9	23.6	100.3
	Mean RLU	3.1	5.5	9.9	13.2	21.4	41.7	163.7
Independent	s _r	1.7	2.9	1.7	1.3	2.4	4.3	9.9
laboratory	RSD _r , %	55.8	53.0	16.8	10.0	11.3	10.3	6.0
	Mean fmol	-0.8	0.7	3.5	5.6	10.7	23.5	100.3

В.

	_			AD	P, fmol/as	say		
		0	1	2.5	5	10	25	100
	Mean RLU	4.9	7.0	9.3	14.0	23.0	52.4	178.2
Method	Sr	1.4	1.6	1.3	2.6	1.8	3.7	17.9
developer	RSD _r , %	28.0	23.3	13.5	18.7	7.7	7.2	10.0
	Mean fmol	-0.5	0.7	2.1	4.8	10.0	26.9	99.5
	Mean RLU	4.0	7.0	9.9	15.0	21.6	48.3	187.5
Independent	Sr	1.5	1.6	1.0	2.1	2.8	4.8	8.7
laboratory	RSD _r , %	37.3	22.3	10.0	13.7	13.1	10.0	4.6
	Mean fmol	-0.3	1.4	3.0	5.8	9.4	24.0	100.3

C.

	_			AM	P, fmol/a	ssay		
		0	1	2.5	5	10	25	100
	Mean RLU	6.5	8.6	10.0	16.7	24.8	52.8	195.6
Method	Sr	1.2	2.1	1.3	1.4	2.9	3.4	15.8
developer	RSD _r , %	18.1	24.0	13.3	8.5	11.7	6.5	8.1
	Mean fmol	0.2	1.3	2.0	5.5	9.8	24.6	100.1
	Mean RLU	5.3	7.9	9.3	13.8	20.9	48.8	180.9
Independent	Sr	1.3	1.9	1.4	2.3	2.2	2.0	11.3
laboratory	RSD _r , %	25.2	24.2	15.2	17.0	10.7	4.1	6.3
	Mean fmol	0.2	1.7	2.5	5.0	9.1	24.9	100.1

^{*a*} Relative Light Unit. Ten replicates were tested at each concentration.

^b Standard Deviation of Repeatability.

^c Relative Standard Deviation of Repeatability.

^{*d*} Amounts of the adenylate were converted from the mean RLU values using the linearity curves in Figure 2 (Method developer) and 4 (Independent laboratory).

Table 2. Estimation of limit of detection (LOD) for adenosine triphosphate (ATP), adenosine diphosphate (ADP), and (C) adenosine monophosphate (AMP)from the method developer and independent laboratory data of pure analytes using LuciPac A3 Surface/Lumitester PD-30 system. (1)

	Adenylate	\overline{X}_{0}^{a}	s _b ^b	m° -	Calcul	ated LOD,
	Adenyiate	^ ₀	s _b	m	RLU^d	fmol/assay ^e
Mathad	ATP	5.2	1.4292	0.0409	10.6	3.3
Method developer	ADP	4.9	0.3848	0.0955	7.3	0.9
developer	AMP	6.5	0.5710	0.0767	9.6	1.8
Independent	ATP	3.1	1.5732	0.0511	9.1	3.0
laboratory	ADP	4.0	1.5339	0.0400	9.7	2.9
laboratory	AMP	5.3	0.9548	0.0554	9.3	2.5

^{*a*} The mean analytical value of the known negative matrix (Mean RLU for 0 fmol/assay in Table 1).

^b The intercept of the plots of standard deviation vs. mean LuciPac A3 Surface responses (Figure 3).

^c The slope of the plots of standard deviation vs. mean LuciPac A3 Surface responses (Figure 3).

^d Relative Light Unit. Each LOD (RLU) were calcurated using the formula: $(\bar{X}_{o} + 3.3 \times s_{b})/(1-1.65 m)$

^e Each LOD (fmol/assay) was calculated by LOD (RLU) using the linearity curves in Figure 2 (Method developer) and 4 (Independent laboratory).

		Dilution					Replica	ite RI I	I				Mean	_	RS
Matrix	Target RLU	factor	1	2	3	4	5	6	7	8	9	10	RLU	s, ^c	(
	1000-500	1000	823	865	919	829	739	790	958	892	655	795	827	89	
Deve alt alter	500-200	5000	396	172	192	364	216	222	232	307	293	371	277	81	
Raw chicken	200-75	10000	126	136	144	132	116	112	101	140	86	143	124	19	
breast ^a	<75	30000	55	43	64	47	62	49	62	79	98	50	61	17	
	Background		14	12	13	21	27	9	26	30	21	25	20	7	
	1000-500	10000	686	533	734	698	710	1163	1075	1098	1018	944	866	218	
Sliced	500-200	33000	262	182	282	194	294	270	343	380	392	347	295	72	
	200-75	100000	128	93	102	112	129	115	135	128	148	107	120	17	
deli ham ^a	<75	330000	95	93	58	48	57	58	69	69	57	55	66	16	
	Background		13	15	14	14	12	29 ^e	18	13	15	14	14	2	
	1000-500	5000	556	846	865	672	769	960	986	749	668	617	769	144	
	500-200	10000	193	284	239	241	193	266	208	236	252	324	244	41	
Orange juice ^a	200-75	30000	115	75	84	76	65	85	121	107	90	73	89	19	
0,	<75	100000	25 ^e	47	47	54	49	47	36	54	49	46	48	5	
	Background		18	20	25	20	27	29	25	11	13	15	20	6	
	1000-500	2000	857	811	902	940	1004	806	1068	807	980	906	908	90	
	500-200	5000	386	313	306	304	294	468	642	559	523	364	416	124	
Yogurt ^a	200-75	16000	124	119	104	181	86	108	172	106	111	115	123	30	
U	<75	32000	43	66	66	55	55	51	76	40	59	47	56	11	
	Background		23	9	18	16	11	17	12	20	18	15	16	4	
	1000-500	300	586	709	647	668	646	714	623	621	631	765	661	54	
	500-200	500	348	424	333	329	376	414	325	314	352	343	356	37	
Apple pie ^a	200-75	3000	67	89	74	101	107	112	77	81	107	98	91	16	
	<75	5000	31	42	35	41	40	37	31	38	51	48	39	7	
	Background		19	14	18	15	16	14	19	13	23	11	16	4	
	1000-500	60000	785	543	395	465	1011 ^e	461	620	534	571	503	542	113	2
	500-200	80000	290	200	134	182	279	278	148	411	223	160	231	85	3
Sliced	200-75	100000	399 ^e	118	173	167	108	186	88	173	105	142	140	36	2
	200-75	120000	172	183	403 ^e	281	124	170	101	124	80	90	147	63	4
deli ham ^{b}	200-75	160000	173	304 ^e	114	114	78	70	111	61	57	130	101	38	3
	<75	400000	153 ^e	50	39	43	45	66	45	48	55	46	49	8	1
	Background		39	42	34	34	37	42	37	28	40	37	37	4	1
	1000-500	4000	692	686	516	596	712	721	631	648	661	474	634	83	1
	500-200	8000	160	219	202	203	239	240	177	208	189	273	211	33	1
•••• b	200-75	10000	135	137	144	196	142	195	171	152	148	248	167	36	2
Orange juice ^b	200-75	12000	121	244	160	125	225	157	187	215	141	168	174	42	2
	<75	40000	90	47	55	48	46	46	53	49	56	79	57	15	2
•	Background		41	40	38	40	40	39	31 ^e	40	38	43	40	2	3

^a Method developer study.

^b Independent laboratory study.

^c Standard Deviation of Repeatability.

^d Relative Standard Deviation of Repeatability.

^e Excluded from data analysis based on Grubbs' test.

Table 4. Replicate Relative Light Unit (RLU), mean RLU, sr and RSDr of the LuciPac A3 Surface method determined with various microbes (1)

Organism	Target PUU	Theoretical					Replica	ate RLU					Mean	e b	RSD _r ,
Organism	Target RLU	cfu/ml ^a	1	2	3	4	5	6	7	8	9	10	RLU	s,°	% ^c
	1000-500	2.0 x 10 ⁶	730	574	576	675	604	600	644	534	634	536	611	62	10
	500-200	8.6 x 10 ⁵	284	377	293	292	310	278	252	330	329	266	301	37	12
C. sakazaki	200-75	3.0 x 10 ⁵	146	93	103	108	139	127	108	144	123	139	123	19	15
	<75	1.5 x 10 ⁵	87	65	71	48	34	31	67	86	61	56	61	19	31
	Background	0	17	16	35	28	13	14	36	20	19	17	22	8	39
	1000-500	2.0 x 10 ⁵	1258	907	585	660	1081	1086	648	791	674	776	847	227	27
	500-200	4.3×10^4	223	230	248	229	320	222	209	254	287	267	249	34	14
L. acidophilus	200-75	2.0×10^4	64	74	56	82	146	53	63	103	113	85	84	29	35
	<75	1.0×10^4	34	41	39	64	39	40	44	49	42	52	44	9	19
	Background	0	10	9	11	12	31	25	8	9	11	15	14	8	55
	1000-500	6.7 x 10 ³	989	1139	818	887	1117	912	926	926	1104	1114	993	116	12
	500-200	2.0×10^{3}	289	298	296	281	226	372	204	256	280	195	270	52	19
S. cerevisiae	200-75	6.7 x 10 ²	143	131	71	152	98	110	67	51	86	80	99	34	35
	<75	3.3 x 10 ²	42	31	25	39	33	27	26	18	22	27	29	7	25
	Background	0	11	8	11	33 ^d	13	11	17	22	20	13	14	5	33

^a Each value was obtained by deviding the colony forming unit of each undiluted suspention by dilution factors.

The actual amount of organism added to the coupon was 250 $\mu\text{L}.$

^b Standard Deviation of Repeatability.

^c Relative Standard Deviation of Repeatability.

^d Excluded from data analysis based on Grubbs' test.

Table 5. Replicate Relative Light Unit (RLU) and mean RLU for the effect of common sanitizers on the LuciPac A3 Surface method (1)

									Rej	olicate	RLU							
Water						1000 fr	nol AT	'P ^a		4000 fmol ATP								
Sanitizer	1	2	3	4	5	Mean	1	2	3	4	5	Mean	1	2	3	4	5	Mean
None (Water)	23	17	21	15	22	20	147	126	128	160	144	141	417	611	394	589	330	468
Sodium Hypochlorite	31	32	22	30	32	29	148	127	180	168	180	161	382	534	539	506	611	514
Peracetic acid	46	59	83	58	77	65	237	415	208	322	276	292	1239	1343	1235	1352	984	1231
Quaternary ammonium	24	30	28	30	22	27	145	134	110	109	150	130	334	451	282	422	327	363

^a Adenosine triphosphate

Table 6. Effect of common sanitizers on the LuciPac A3 Surface method (1)

			Mear					
	Wa	nter	1000 fm	IOLATP ^b	4000 fr	Inhibit	ion, % ^c	
Sanitizer	C ^d	S ^e	CA ^f	SA^{g}	CA	SA	1000 fmol ATP	4000 fmol ATP
Sodium Hypochlorite	20	31	141	161	468	514	-8	-8
Peracetic acid	20	65	141	292	468	1231	-187	-160
Quaternary ammonium	20	27	141	130	468	363	29	25

^{*a*} Relative Light Unit

^b Adenosine triphosphate

^c A negative percent inhibition correlated to an increase in signal. Calculated using mean RLU and the following equation: Inhibition (%) = $\{1-[(SA-S)/(CA-C)]\}\times 100$.

^d C = Signal from the control (analyte-free water) on the control surface (analyte-free water dried onto the stainless steel surface).

^e S = Signal from the control (analyte-free water) on the disinfectant surface (disinfectant dried onto the stainless steel surface).

^{*f*} CA = Signal from ATP on the control surface (analyte-free water and ATP dried onto the stainless steel surface).

^g SA = Signal from ATP on the disinfectant surface (disinfectant and ATP dried onto the stainless steel surface).

REFERENCES CITED

- 1. Tanaka, N., Saito, W., and Bakke, M., Validation Study of LuciPac[™] A3 Surface for Hygiene Monitoring through Detection of ATP, ADP, and AMP from Stainless Steel Surfaces, AOAC[®] *Performance Tested[™]* certification number 051901. Approved May 2019.
- 2. Bakke, M., & Suzuki, S. (2018) *J. Food Prot.* **81**, 729-737. doi: 10.4315/0362-028X.JFP-17-432
- 3. Viator, R., Gray, R. L., Sarver, R., Steiner, B., Mozola, M., & Rice, J. (2017) J. AOAC. Int. 100, 537-547. doi: 10.5740/jaoacint.16-0311
- 4. Porterfield, R. I., & Capone, J. J. (1984) Med. Devices Diagnostic Ind. 6, 45-50. doi: 10.1007/s11746-001-0401-1.
- 5. Rutala, W. A., & Weber, D. J. (2016) Am. J. Infect. Control 44, e69-76. doi: 10.1016/j.ajic.2015.10.039
- 6. Kajiyama, N. & Nakano, E. (1994) *Biosci. Biotech. Biochem.* 58, 1170-1171. doi: 10.1271/bbb.58.1170